Supplementary measurements to Eddy Covariance

LI-COR Ecosystem Gas Exchange ChinaFlux August 22, 2022 **Dave Johnson**

Summarizing the past modules

- Module 1: The Importance of Measuring and Researching Carbon and Water Cycles and Their Impact on Climate Change
- Module 2: The Theory of Ecosystem Gas Exchange: The Eddy **Covariance Method**
- Module 3: Eddy Covariance Applications and Experimental Design
- Module 4: Instrumentation for Eddy Covariance
- Module 5: Integration of an Eddy Covariance System
- Module 6: Data Processing with EddyPro

This module 7...

- What other biological influences affect GHG fluxes at our research sites?
 - Leaf-level drivers
 - Soil-level drivers
- How can we measure these additional influences?
- How can they be used to help explain and define our flux results?

Components of an EC System

Slow meteorological (biomet) sensors

Power and power distribution

Secondary data storage
High speed sensors

Mounting tripod/tower

Communications hardware

Data collection and data processing

The big picture

<u>Net</u> measurements of CO_2 , H_2O , CH_4 , etc. fluxes

Field: Area of Interest

Biomet Measurements help identify some

Soil Moisture and

What else influences or effects on our net fluxes?

Carbon Cycle

Let us start with the leaf-level influences

How do these tiny stomates have an affect on fluxes?

Stomatal Size: 20-50 mm **Stomatal Density:** 10-80/mm² on upper surface, 25-330/mm² on lower surface

Cuticle

Upper epidermic

Palsade mesophyll

Spongy mesophyll

Lower epidermic

First, we can measure the transpiration

$$E = \frac{u_i(W_{sam})}{s(1-W)}$$

E transpiration (mmol $m^{-2}s^{-1}$) *u* flow (mol s⁻¹) *W* water mole fraction (mmol mol⁻¹) s leaf area (m²)

First, we can measure the transpiration

Then we can compute the conductance's that control the flow of H_2O (and CO_2) molecules

Total Conductance (g_{tw}) and stomatal conductance (g_{sw})

$$E = g_{tw}(W_{leaf} - W_{sam})$$

$$g_{tw} = \frac{E}{W_{leaf} - W_{sam}}$$

$$g_{sw} = \frac{1}{\frac{1}{g_{tw}} - \frac{1}{g_{bw}}}$$

Measuring stomal conductance over an area of interest

Stomatal conductance (g_{sw}) measured with a GPS-enabled LI-600. Georeferenced measurements from the LI-600 are easily viewed in mapping applications including Google Earth[™] and Esri[®] ArcGIS[®].

Integrating stomal conductance with EC fluxes

Stomatal conductance (g_{sw}) measured with a GPS-enabled LI-600. Georeferenced measurements from the LI-600 are easily viewed in mapping applications including Google Earth[™] and Esri[®] ArcGIS[®].

Why its important to scaling up and down

Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem

Richard Wehr and Scott R. Saleska Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, USA

Abstract

Canopy stomatal conductance is commonly estimated from eddy covariance measurements of the latent heat flux (LE) by inverting the Penman-Monteith equation. That method ignores eddy covariance measurements of the sensible heat flux (H) and instead calculates *H* implicitly as the residual of all other terms in the site energy budget. Here we show that canopy stomatal conductance is more accurately calculated from eddy covariance (EC) measurements of both H and LE using the flux-gradient equations that define conductance and underlie the Penman-Monteith equation, especially when the site energy budget fails to close due to pervasive biases in the eddy fluxes and/or the available energy. The flux-gradient formulation dispenses with unnecessary assumptions, is conceptually simpler, and is as or more accurate in all plausible scenarios. The inverted Penman-Monteith equation, on the other hand, contributes substantial biases and erroneous spatial and temporal patterns to canopy stomatal conductance, skewing its relationships with drivers such as light and vapor pressure deficit.

...the inverted Penman–Monteith equation is an inaccurate and unnecessary approximation to the flux–gradient equations for sensible heat and water vapor.

Incomplete measurement of the energy budget at EC sites causes substantial bias and misleading spatial and temporal patterns in canopy stomatal conductance, even after attempted eddy flux corrections.

The biases in stomatal conductance vary between 0 % and \sim 30 % depending on the time of day and the site characteristics, resulting in erroneous relationships between stomatal conductance and driving variables such as light and vapor pressure deficit.

Wehr, R. and Saleska, S. R.: Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem, Biogeosciences, 18, 13–24, https://doi.org/10.5194/bg-18-13-2021, 2021.

Why its important to scaling up and down

Agricultural and Forest Meteorology Volume 280, 15 January 2020, 107786

by stomatal conductance.

Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest

Eugénie Paul-Limoges ^a A 🖾, Sebastian Wolf ^b, Fabian D. Schneider ^c, Marcos Longo ^c, Paul Moorcroft ^d, Mana Gharun ^e, Alexander Damm ^{a, f} Stomatal conductance is down-regulated depending on the amount of plant available soil moisture

Stomatal regulation was also found during summer afternoons in response to enhanced atmospheric evaporative demand in order to <u>mitigate water-stress related damage</u> (i.e. cavitation).

Even with nighttime stomatal conductance up to 90% of daytime conductance, transpiration rates at night tend to be lower than during daytime due to a (1) lack of photosynthesis and (2) considerably lower nighttime VPD

Paul-Limoges, Eugénie, et al. "Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest." Agricultural and Forest Meteorology 280 (2020): 107786.

Why its important to scaling up and down

Hydrol. Earth Syst. Sci., 23, 2877-2895, 2019 https://doi.org/10.5194/hess-23-2877-2019 C Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. \odot \bigcirc

Hydrology and § Earth System EGU Sciences

Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region

Guoxiao Wei^{1,2}, Xiaoying Zhang³, Ming Ye⁴, Ning Yue^{1,2}, and Fei Kan^{1,2}

¹Key Laboratory of Western China's Environmental System (Ministry of Education), Lanzhou University, Lanzhou, 730000, China ²School of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China ³College of Construction Engineering, Jilin University, Changchun, 130400, China ⁴Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA

Correspondence: Xiaoying Zhang (xiaoyingzh@jlu.edu.cn)

The absence of a mechanistic representation of the physiological response to plant hydrodynamics makes it difficult for the available ET models to resolve the dynamics of intradaily hysteresis, producing patterns of diurnal error, while the imbalance or lack of between-leaf water demand and soil water supply imposes hydrodynamic limitations on stomatal conductance.

Wei, G., Zhang, X., Ye, M., Yue, N., and Kan, F.: Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region, Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019, 2019.

We can see that CO₂ fluxes are affected by the amount of Leaf Area

Seasonal relationships between *PAR* and *CO*₂ *flux*

L. Xu, D.D. Baldocchi / Agricultural and Forest Meteorology 1232 (2004) 79-96

We also know ecosystem respiration fluxes are affected by the amount of Leaf Area

L. Xu, D.D. Baldocchi / Agricultural and Forest Meteorology 1232 (2004) 79-96

Leaf Area Index (LAI) is often required for submission to both the Flux Networks and with publications

Upload Data

We are truly pleased to welcome all researchers in Asia who are willing to utilize their research outcome by sharing your data with us. Our data policy ensures data providers' right and the close communication with data users. When someone is downloading your data from our system, you will be informed simultaneously by email. By opening your data to the public and encouraging the use of them to other researchers, it will result in the new progress in your study as well as returning the results of research to society

Data uploading guide

Please prepare Following three files and send to AsiaFlux Secretariat (asiafluxdb [at] asiaflux.net)

Data file should be assembled per year.

Mean annual air temperature	6.2 degC (2001-2003)	
Mean annual precipitation	1043 mm (2001-2003)	
/egetation Type	Japanese larch forest	
	Japanese larch (Larix Kaempferi Sarg.),	
Dominant Species (Overstory)	Birch (Betula ermanii and Betula platyphylla),	
	Japanese elm (Ulmus japonica), Spruce (Picea jezoensis)	
Dominant Species (Understand)	Fern (Dryopteris crassirhizoma, Dryopteris austriaca)	
Jorninant Species (Understory)	Pachysandra terminalis	
Canopy height	About 15m	
vye	About 100 years old	
AI	9.2 m ² m ⁻² (max) (Overstory: 5.6 m ² m ⁻² , Understory: 3.6 m ² m ⁻²)	
Poil type	Volcanogenous regosol	

lome	About -	Community -	Sites 🛨	Data 🚽	Tech 🗕	Theme Years +	Resources
Home	/ Data / BADM	M / BADM Standards	/ LAI				c
BAD	M Grou	D: LAI					
BADM 1	ype: VegCover	P					
Descrip Group F	tion: Leaf Area	Index					
Last upo	dated: Mar 02, 2	2021					
(Overview	Definitions & Uni	ts F	xamples 🛛	Custo	mize CSV	
		- <u>H</u>					
BADM	variables:	Definitions, Unit	s, Require	ments			
BADM	I variables: I erview tab or BA	Definitions, Unit	s, Require ation of Requ	ments	onal variables.		
BADM See Ove Multiple	I variables: I erview tab or BA entries of this E	Definitions, Unit	s, Require ation of Requ	ments ired and Opti ite. However,	onal variables. combinations	of © variables must l	oe unique. Read
BADM See Ove Multiple	I variables: I erview tab or BA entries of this B	Definitions, Unit ADM Basics for explan BADM group can be re	s, Require ation of Requ eported per s	ments lired and Opti ite. However,	onal variables. combinations	of © variables must I	oe unique. Read
BADM See Ove Multiple Show Al	I variables: erview tab or BA entries of this B	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options	s, Require ation of Requ eported per s	ments lired and Opti lite. However,	onal variables. combinations	of © variables must l	oe unique. Read
BADM See Ove Multiple Show Al Variabl Require	I variables: I erview tab or BA entries of this B II LIST Options le ements	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units	s, Require lation of Requ eported per s	ments lired and Opti- ite. However, Desc	onal variables. combinations	of © variables must l	oe unique. Read
BADM See Ove Multiple Show Al Variabl Requir	I variables: I erview tab or BA entries of this E II LIST Options le ements	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units m2 m-2	s, Require lation of Requ eported per s	ments hired and Opti- lite. However, of Desc Vege	onal variables. combinations ription tation (Plant,	of © variables must l Leaf, Green) Area Inc	be unique. Read
BADM See Ove Multiple Show Al Variabl Require	I variables: I erview tab or BA entries of this B II LIST Options le ements	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units m2 m-2	s, Require lation of Requ eported per s	ired and Opti ite. However, Desc Vege Leaf / the to	ription tation (Plant, Area Index (or	of © variables must l Leaf, Green) Area Ind other Vegetation Are	be unique. Read dex ea Index as indica
BADM See Ove Multiple Show Al Variabl Require * LAI Require	I variables: I erview tab or BA entries of this B II LIST Options le ements ed	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units m2 m-2	s, Require ation of Requ eported per s	ments lired and Opti ite. However, Desc Vege Leaf / the to	ription tation (Plant, Area Index (or tal leaf area (t	of © variables must l Leaf, Green) Area In other Vegetation Are he one-sided leaf are	dex a Index as indicate a) per unit grour
BADM See Ove Multiple Show Al Variabl Require * LAI Require * LAI_T © Requi	I variables: I erview tab or BA entries of this B II LIST Options le ements ed YPPE uired	Definitions, Unit ADM Basics for explan BADM group can be red Hide All LIST Options Units m2 m-2 LIST(LAI_T)	s, Require lation of Requ eported per s	ments irred and Opti- ite. However, - Desc Vege Leaf / the to Vege Use p	ription tation (Plant, Area Index (or stal leaf area (t tation (Plant,	of © variables must l Leaf, Green) Area Ind other Vegetation Area he one-sided leaf are Leaf, Green) Area Ind to indicate type of Ve	dex unique. Read dex ea Index as indicu ea) per unit groun dex type egetation Area Ir
BADM See Ove Multiple Show Al Variabl Require * LAI Require * LAI_T © Requi	I variables: I erview tab or BA entries of this B II LIST Options II LIST Options II LIST Options II LIST Options II LIST Options	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units m2 m-2 LIST(LAI_T)	s, Require ation of Requ eported per s YPE) Show	inter and Optivite. However, of Desc Desc Desc Desc Desc Desc Desc Desc	ription tation (Plant, Area Index (or tal leaf area (t tation (Plant, predefined list Index type. Se	of © variables must l Leaf, Green) Area In other Vegetation Are he one-sided leaf are Leaf, Green) Area In to indicate type of Ve e predefined list for	dex dex ea Index as indic ea) per unit groun dex type egetation Area Ir definitions.
BADM See Ove Multiple Show Al Variabl Require * LAI © Require * LAI_T © Require * LAI_T	I variables: I erview tab or BA entries of this B II LIST Options ILE ements ed TYPE uired	Definitions, Unit ADM Basics for explan BADM group can be re Hide All LIST Options Units m2 m-2 LIST(LAI_T) LIST(LAI_T)	s, Require ation of Requ eported per s YPE) Show	ments irred and Opti ite. However, - Desc Vege Leaf <i>i</i> the to Use p Area E) Vege	ription tation (Plant, Area Index (or tal leaf area (t tation (Plant, oredefined list Index type. Se tation (Plant, oredefined list	of © variables must l Leaf, Green) Area Ind other Vegetation Area he one-sided leaf area Leaf, Green) Area Ind to indicate type of Ve e predefined list for Leaf, Green) Area Ind to indicate the type of	dex ea Index as indic ea) per unit grou dex type egetation Area Ir definitions. dex canopy type of canopy being

What to we mean by Leaf Area Index (LAI)?

Simply, Leaf Area Index (LAI) is the ratio of 'Leaf Area' to the 'Ground Area'

LAI = Leaf Area / Ground Area

And it can be used to describe an ecosystem's dynamic canopy.

These three example have the same LAI!

The area of the leaves are the same in each example, over the same (blue) ground area

The LAI-2200C Plant Canopy Analyzer

 The LAI-2200C is a standalone instrument for manual, nondestructive LAI measurements.

How it measures Leaf Area Index (LAI)

Example LAI measurement routines for EC fetches

https://ameriflux.lbl.gov/data/badm/badm-standards/LAI

Integrating LAI with Eddy Covariance fluxes

The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems

CrossMark

Min Liu^{a,b}, Honglin He^{a,*}, Xiaoli Ren^{a,c}, Xiaomin Sun^a, Guirui Yu^a, Shijie Han^d, Huimin Wang^a, Guovi Zhou^e

^a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China

b Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China

^e South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China

ARTICLE INFO

ABSTRACT

Article history Received 21 July 2014 Received in revised form 28 January 2015 Accepted 30 January 2015 Available online 6 March 2015

Keywords: Eddy covariance Model data fusion Parameter optimization Forest ecosystems SIPNET

The ability of terrestrial biogeochemical models in predicting land-atmospheric carbon and water exchanges is largely hampered by the insufficient characterization of model parameters. The direct observations of carbon/water fluxes and the associated environmental variables from eddy covariance (EC) flux towers provide a notable opportunity to examine the underlying processes controlling carbon and water exchanges between terrestrial ecosystems and the atmosphere. In this study, we applied the Metropolis simulated annealing technique to conduct parameter optimization analyses of a processbased biogeochemical model, simplified PnET (SIPNET), using a variety of constraining variables from EC observations and leaf area index (LAI) from MODIS at three ChinaFLUX forest sites: a temperate mixed forest (CBS), a subtropical evergreen coniferous plantation (QYZ) and a subtropical evergreen broadleaved forest (DHS). Our analyses focused on (1) identifying the key model parameters influencing the simulation of carbon and water fluxes with SIPNET; (2) evaluating how different combinations of constraining variables influence parameter estimations and associated uncertainties; and (3) assessing the model performance with the optimized parameterization in predicting carbon and water fluxes in the three forest ecosystems. Our sensitivity analysis indicated that, among three different forest ecosystems, the prediction of carbon and water fluxes was mostly affected by photosynthesis-related parameters. The performances of the model simulations depended on different parameterization schemes, especially the combinations of constraining variables. The parameterization scheme using both net ecosystem exchange (NEE) and evapotranspiration (ET) as constraining variables performed best with most well-constrained parameters. When LAI was added to the optimization, the number of well-constrained model parameters was increased. In addition, we found that the model cannot be well-parameterized with only growingseason observations, especially for those forest ecosystems with distinct seasonal variation. With the optimized parameterization scheme using both NEE and ET observations all year round, the SIPNET were able to simulate the seasonal and inter-annual variations of carbon and water exchanges in three forest ecosystems.

© 2015 Elsevier B.V. All rights reserved.

Disentangling Climate and LAI Effects on Seasonal Variability in Water Use Efficiency Across **Terrestrial Ecosystems in China**

Yue Li^{1,2} , Hao Shi³ , Lei Zhou⁴, Derek Eamus^{5,6} , Alfredo Huete⁵, Longhui Li⁵, James Cleverly^{5,6} , Zhongmin Hu⁷, Mahrita Harahap⁵, Qiang Yu^{3,5}, Liang He⁸, and Shaogiang Wang^{1,2}

¹Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, ²College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, ³State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, China, ⁴College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China, ⁵School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia, ⁶Australian Supersite Network, Terrestrial Ecosystem Research Network, University of Technology Sydney, Sydney, New South Wales, Australia, ⁷School of Geography, South China Normal University, Guangzhou, China, ⁸Agro-meteorological Center, National Meteorological Center of China Meteorological Administration, Beijing, China

Abstract Water use efficiency (WUE), the ratio of gross primary productivity (GPP) over evapotranspiration (ET), is a critical ecosystem function. However, it is difficult to distinguish the individual effects of climatic variables and leaf area index (LAI) on WUE, mainly due to the high collinearity among these factors. Here we proposed a partial least squares regression-based sensitivity algorithm to confront the issue, which was first verified at seven ChinaFlux sites and then applied across China. The results showed that across all biomes in China, monthly GPP (0.42–0.65), ET (0.33–0.56), and WUE (0.01–0.31) showed positive sensitivities to air temperature, particularly in croplands in northeast China and forests in southwest China. Radiation exerted stronger effects on ET (0.55–0.78) than GPP (0.19–0.65), resulting in negative responses (-0.44 to 0.04) of WUE to increased radiation among most biomes. Increasing precipitation stimulated both GPP (0.06–0.17) and ET (0.05-0.12) at the biome level, but spatially negative effects of excessive precipitation were also found in some grasslands. Both monthly GPP (-0.01 to 0.29) and ET (0.02-0.12) showed weak or moderate responses to vapor pressure deficit among biomes, resulting in weak response of monthly WUE to vapor pressure deficit (-0.04 to 0.08). LAI showed positive effects on GPP (0.18-0.60), ET (0-0.23), and WUE (0.13-0.42) across biomes, particularly on WUE in grasslands (0.42 ± 0.30) . Our results highlighted the importance of LAI in influencing WUE against climatic variables. Furthermore, the sensitivity algorithm can be used to inform the design of manipulative experiments and compare with factorial simulations for discerning effects of various variables on ecosystem functions.

Effect of LAI on Net Ecosystem Exchange are clear

The study area is in the Xujiaba region of southwest China in the Ailaoshan National Nature Reserve

The forest has a mean canopy height was 20 m.

LAI in each month of 2015 was lower than the average value during 2011–2014 (significantly from Jan-Jul). The difference between the years were related to snowfall.

Phenology

The study of cyclic and seasonal natural phenomena, especially in relation to climate and plant and animal life

- Examples of plant phenological processes, include when leaves emerge in the spring and change color in the autumn.
- They are highly responsive to variation in weather as well as longer-term changes in climate

Why Phenology?

- Leafing, flowering, fruiting
- Leaf senescence
- Bird migration
- Insect infestation
- Plant disease
- Climate change
 - Springtime

PhenoCams

- Digital cameras used to monitor vegetation phenology
- Provide automated, near-surface remote sensing of canopy phenology
- Images uploaded to a server
- Techniques can be used to extract quantitative color information (i.e., greenness) from each picture.

Digital Camera (PhenoCam) Image Gallery

Mid-day image uploaded every day at 12 pm. Past day's images also stored.

FluxSuite

Bulk Image Download

Station Pictures								
Show 10 + entries Search:								
Date	Image Name	Actions						
2017_01_12_120006	2017_01_12_120006.jpg	6 5						
2017_01_13_120008	2017_01_13_120008.jpg	6 Ł						
2017_01_14_120007	2017_01_14_120007.jpg	0 Ł						
2017_01_15_120008	2017_01_15_120008.jpg	0 1						
Showing 1 to 4 of 4 potrior								

The PhenoCam Network

- https://phenocam.sr.unh. edu/webcam/
- Hosted by University of New Hampshire, but world-wide collaboration
- Recommend (and provide some support through hosted programs / instructions) for StarDot PhenoCams

Welcome, Guest (login

How does the soil (and what is in it) affect fluxes?

Depth

CO₂ profile in the soil

 CO_2 concentration

Understanding the drivers for Soil Respiration

What creates gas fluxes (in and out) of the soil?

Using chambers to measure the fluxes from the soil

- Requirements and considerations for chamber-based soil GHG flux measurement
 - Measure amount of GHG from the soil accurately
 - Minimize the influence on soil GHG "Transport"
 - Minimize the influence on soil GHG "Production"
 - Deal with temporal and spatial variation

Requirement examples

Minimize soil disturbance Equalize chamber pressure To maintain pressure equilibrium, all LI-COR soil the soil collar. Gasket Seal chambers feature a patented pressure vent. Chamber Baseplate Soil Collar → Velocity High Low **Optimize chamber** air mixing

The chamber never touches

Measuring fluxes with a chamber

 W_{o} H₂O,mol mol⁻¹ F_{C02}: Flux, mmol m⁻²s⁻¹

		¢
	⊷ 173 × CO ₂ 692.90 µmol mol ⁻¹	
(3) IIII :≡ 0.800	← FUX X LI-870 CO ₂ Flux 1.62 µmet m ⁻² s ⁻¹	⊷ ∎70 × CO ₂ (Wet) 681.34 µmol mol ⁻¹
0.600	r € × Chamber Pressure 97.20	r Chamber Temperature 22.53 ℃
0.200	← Cell Temperature 51.46	Flow Rate 0.76

Measuring continuously to capture variations

Chambers are used to measure temporal variability of both CO₂ (blue) and CH_4 (red) soil fluxes.

Measuring to capture spatial variations

Chambers can be used to measure spatial variability through multiplexed systems (1 - 36 chambers).

Trace gases, such as N₂O can be measured with the appropriate analyzer (precision) and chamber (technique).

tart Time		ELI-8250 DOY Initial Valu	ELI-8250 Je Port	: 8250-01 Port	ECHAMBER Temperature I	ELI-8250 Initi Pressure Initi	ELI-8250 ial V Temperature Ini	ELI-7820 ti FN ₂ O Dry Lin	LI-7810 CH ₄ Dry Initial Val	LI-7810 CO ₂ Dry Initial V	LI-870 CO ₂ Dry Initial V	LI-7810 FCH ₄ D
0210907	054824	250.24207	7	5	19.83682	96.92	31.30682	0.00483	2112.329	465.73	μμοι μοι · 445.96	0.11782
0210907	054444	250.23953	7	4	19.27636	96.91	31.25284	-0.00383	2119.519	485.83	459.42	0.0176
0210907	054104	250.23698	7	3	18.99455	96.92	31.16691	-0.01195	2124.325	491.54	466.14	-0.2944
0210907	053724	250.23443	7	2	19.02227	96.91	31.17756	0.00524	2118.147	488.96	471.22	0.6414
0210907	053344	250.23189	7	1	19.48136	96.96	31.09481	-0.01076	2110.333	481.1	460.01	-0.034
≔ Lo	og ~Ch	art … Details										ĺ
					Nitrous	Oxide (N2	2O) Flux				Q Q 🛓	
	0.9									Cham	ber 1-1 🔵	Obser
				1						Cham	ber 1-2 🔴	All
	0.8 -									Chaml	ber 1-3 🔵	Chart 1
						•				Cham	ber 1-4 🔴	Nitrou
	0.7				•					Cha	mber 2	Legend
										Chai	mber 3 🛑	Righ
-	0.6					•				Cha	mber 5	
m ⁻² s							•	•		Cha	mber 6	X-AXIS
om	0.5				•		• •	•.		Cham	ber 7-1 🌘	
u) Xr										Cham	ber 7-2	_
년 .드	0.4			•		·		•		Chaml	ber 7-3	🕂 A
J-V-L				1 .		1.00 m ² 0				Cham	ber 7-4	
- No No	0.3	•		•		٠				Cham	ber 7-5	Y-A)
320 h		•							••	Cha	mber 8	
32-IJ	0.2	· · ·	• • • • • • • • • • • •			••	• ••• •	• •	-			
		- 14 C		· · · ·	•	•	•	•	1.78			G
	0.1		•									
	0.1				C) 🔆 🖓 🖓			instant a	*****			► G
			and the second	1								
	0-	27	and the second second	1999 - Sec.	and the second				Contraction of the local division of the loc			
		90 ⁻ 0					* 10 ₁₁					

Example of a long-term chamber system

Captures both temporal and spatial variations in soil fluxes

Integrating Soil Flux with Eddy Covariance

What can be learned from including soil flux measurements with your eddy covariance?

Processes

- Better understanding of components that go into the NEE.
- Partition Ecosystem Respiration into Soil/Plant(leaf/stem)/Litter/etc
- Get nighttime <u>and</u> daytime soil flux measurements
- The majority (2/3) of ecosystem respiration is from the soil
- Allows for better testing of 'manipulative' experiments (treatments, plot-scale)
- Process example; forest soils can transition between oxic and anoxic conditions depending on topographic position and environmental conditions, leading to significant variability in methane flux

What can be learned from including soil flux measurements with your eddy covariance?

Can measure Trace Gases

- Soil is primary source/sink for CH₄ and N₂O
- Fluxes of N_2O/CH_4 are much smaller so might not be detectable by Eddy Covariance
- In fact, no good solution for N₂O measured by Eddy Covariance yet.

What can be learned from including soil flux measurements with your eddy covariance?

Footprint Analysis

- Handles spatial heterogeneity in the footprint (i.e., upscaling CH_{A})
- Soil variability within the footprint is a driver for differences in flux rates
- Eddy Covariance footprints and boundaries can change, while soil flux collars are static
- Higher % percent ground cover doesn't mean it dominates the flux. A small % land cover with a high flux rate could dominate a flux footprint
- Seasonal patterns and magnitudes of CH₄ flux can be due to fluxes from the different land types within the fetch

What can be learned from including soil flux measurements with your eddy covariance? QA/QC

- Useful when EC measurements are unavailable (unstable) conditions, QC cleaning, other interruptions (contamination, power, etc.)
- The ecosystem respiration (Re) calculation has several sources of uncertainty
- The short time step of the chamber method makes it ideal for gap-filling methane flux data (few alternatives are available).

Many EC sites (and publications) are now incorporating Soil Flux measurements

Many EC sites (and publications) are now incorporating Soil Flux measurements

: 20 Feb 2015

Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest

Andrew D. Richardson ⊠, David Y. Hollinger, Julie K. Shoemaker, Holly Hughes, Kathleen Savage & Eric A. Davidson

Scientific Data 6, Article number: 117 (2019) Cite this article

Eddy covariance for quantifying trace gas fluxes from soils

W. Eugster 🕞 and L. Merbold 🕞 ETH Zurich, Department of Environmental Systems Science, Institute of Agricultural Sciences, Universität-Strasse 2, 8092 Zurich, Switzerland

Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

Josep Barba^{a, 1}, Alejandro Cueva^{b, 1}, Michael Bahn^c, Greg A. Barron-Gafford^{d, e}, Benjamin Bond-Lamberty^f, Paul J. Hanson^g, Aline Jaimes^a, Liisa Kulmala^h, Jukka Pumpanenⁱ, Russell L. Scott^j, Georg Wohlfahrt^c, Rodrigo Vargas^a 2 🖂

Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time

Jonathan Sanderman 🔀, Ronald G. Amundson, Dennis D. Baldocchi

First published: 04 June 2003 | https://doi.org/10.1029/2001GB001833 | Citations: 80

Spatial and temporal variation of CO₂ efflux along a disturbance gradient in a *miombo* woodland in Western Zambia

L. Merbold^{1,4}, W. Ziegler¹, M. M. Mukelabai², and W. L. Kutsch³ ¹Max-Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany ²Zambia Meteorological Department, Haile Sellasie Avenue, City Airport, P.O. Box 30200, 10101 Lusaka, Zambia ³Johann Heinrich von Thünen Institut (vTI), Institute for Agricultural Climate Research, Bundesallee 50, 38116 Braunschweig, Germany ⁴Institute of Agricultural Sciences, Grassland Science Group, ETH Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland

Received: 04 May 2010 - Discussion started: 29 Jul 2010 - Revised: 07 Dec 2010 - Accepted: 17 Dec 2010 - Published: 21 Jan 2011

Methane flux measurements in rice by static flux chamber and eddy covariance

Michele L. Reba 🔀, Bryant N. Fong, Ishara Rijal, M. Arlene Adviento-Borbe, Yin-Lin Chiu, Joseph H. Massey

First published: 16 November 2020 | https://doi.org/10.1002/agg2.20119 | Citations: 1

Summary

- Measuring the following biological functions can help explain flux results and are often required for networks and publications:
 - Stomatal Conductance (LI-600)
 - Leaf Area Index (LAI-2200C)
 - Phenology (StarDot PhenoCam)
 - Soil fluxes (LI-COR Trace Gas Analyzers for CO₂, CH₄, N₂O integrated with multiplexed chambers)

Thank You

Questions?

